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Renormalisation group study of the random Ising model in 
a transverse field in one dimension 
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Laboratoire de Physique des Solides$, BLt. 510, Universitk Paris Sud, Centre d'Orsay, 
91405 Orsay, France 

Received 24 April 1980 

Abstract. The random Ising model in a transverse field in one dimension with Hamiltonian 
H = -Z ( r i S f  +JiS:S:+,) is studied at T = 0 from a real-space renormalisation group block 
method which preserves duality transformations. The ground state magnetisation and the 
ground state energy are determined for random distributions P ( J )  ( P ( r ) )  = NJJNJ-'/Jpfor 
0 < J < Jo and P ( J )  = 0 for J > Jo. A new critical behaviour corresponding to a new fixed 
point takes place in the presence of disorder. The crossover exponent describing the 
departure from the pure system behaviour is calculated. The second derivative of the 
ground state energy a*E/ai='* which diverges logarithmically for the pure system is rounded 
in the presence of disorder but a sharp transition field still exists where the magnetisation 
goes to zero with an exponent about twice as large as the pure system exponent. 
Comparison is made with the analytical results of McCoy and Wu for the classical equivalent 
random-striped king 2D model. 

1. Introduction 

It is important to understand the effect of disorder on second-order phase transitions. 
For annealed systems a simple renormalisation of the critical exponents is generally 
expected (Fisher 1968). For strongly quenched disorder new phenomena can arise 
(percolation, localisation, spin glass) (Lubensky 1978). We shall here be mainly 
concerned with quenched disorder. (For example, we shall be interested in the 
transition for a magnetic system where the exchange interactions are not all the same, 
but satisfy some probability distribution function.) From simple heuristic arguments 
(Harris 1974) confirmed by E expansion renormalisation group calculations (Lubensky 
1975) it has been shown that weak disorder has an effect (it changes the transition of the 
'pure' system) if the response of the pure system to the disorder field at the critical 
temperature diverges: for a magnetic system with random exchange interactions the 
disorder is 'relevant' if the specific heat of the pure system diverges as C - AT-* with 
a>O. If a < 0 as for the three-dimensional Heisenberg model the transition of the pure 
system is not affected by weak disorder. Close to the critical point the fluctuations are 
long-range and will not see the inhomogeneities, and a well defined transition is 
expected. The question which remains is: When weak disorder is relevant what 
happens? Is there still a sharp transition, and if so, of which kind? There is no definite 
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answer at the moment. Series expansion methods have been tried, so far unsuccessfully 
(Rushbrooke 1971, Rapaport 1972). Monte Carlo calculations seem to show a sharp 
unaffected transition for the diluted 2D Ising model (Zobin 1978) and for the 3D 
diluted Heisenberg models (Klenin 1979) where no important effect is expected from 
the Harris argument (a = 0 for the 2D Ising model and a < 0 for the 3D Heisenberg 
model). Real-space renormalisation group methods have been used to study bond- 
diluted Ising models in two and three dimensions, and no new critical behaviour was 
observed (Young and Stinchcombe 1976, Southern and Young 1977, Harris and 
Lubensky 1974, Jayaprakash et a1 1977) (the 3D Jsing model has a divergent specific 
heat a - $  and the disorder should be relevant). Close to four dimensions renor- 
malisation group calculations seem to show that when a > 0 the disorder is relevant and 
still leads to a sharp phase transition with new critical exponents (Lubensky 1975). 

When long-range correlations of the disorder are present the effects of disorder may 
he more drastic. When bond disorder is introduced in a model with translational 
invariance along one direction the Harris condition for the relevance of disorder 
a = 2 -- dv > 0 is replaced by 2 - (d -. 1)v  > 0. Thus for the two-dimensional Ising model 
(d = 2, v = 1) with long-range row defects 2 - (d - 1)v  = 1 and disorder is expected to be 
fairly relevant, leading to a new phase transition behaviour. Such a model has already 
been considered by McCoy and Wu. They consider a 2D king model on a square lattice 
in which all horizontal bonds have a fixed value J1; then they require vertical bonds J2( j )  
between rows j and j + 1 to be equal but allow J2( j )  to be a random function of j with 
width 8Jz. They consider the probability distribution P(J2) = NJ?- ' /JS  for 0 < J2 < 
JZ0 and P = 0 for J2 > J2". In a series of papers they study the free energy and the specific 
heat (McCoy and Wu 1968), the correlation functions (McCoy and Wu 1969, McCoy 
1969) and try to extend some of their results to more general probability distributions 
(McCoy 1970). The main result to emerge from their analytical calculations is that the 
system has a well-defined critical temperature. However the specific heat does not 
show any sharp singularity (only an essential singularity appears in the free energy). 
The bulk magnetic properties could not be calculated correctly; only those at the 
boundary are obtained. The spontaneous boundary magnetisation disappears at the 
critical point with an exponent p = 1, and the boundary correlation functions show a 
logarithmic dependence on distance at the critical point. Up to now no other cal- 
culations (Monte Carlo or renormalisation group methods) have reproduced the results 
obtained by Wu and McCoy, and this new transition is not very well understood. In this 
paper we study by a real-space renormalisation group method the d - 1  quantum 
analogue of this random classical d = 2 Ising model. By going to some infinite 
anisotropic limit, the transfer matrix of the 2D statistical mechanical problem is 
transformed into a quantum mechanical d = 1 Hamiltonian (Fradkin and Susskind 
1978): the one-dimensional random king model in a transverse field 

where Sf and Sf are Pauli spin matrices. This random 1D quantum spin model has been 
studied exactly (Pfeuty 1979) only for the location oE the transition. Another closely 
related quantum model, the X Y  spin-; model in a 2 field with random coupling 
constants, has been studied by Smith (1970), but no rigorous analysis of the new 
behaviour has yet been undertaken. We should mention related work in which 
real-space renormalisation group methods have been used for random quantum 
systems: the study of the localisation transition,.for electrons in a random potential in 
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two dimensions (Lee 1979, Domany and Sarker 1979) and the study of an antifer- 
romagnetic spin-$ Heisenberg chain with random exchange coupling constants (Ma and 
Dasgupta 1979). 

The real-space renormalisation group technique used in this paper is a block method 
introduced by Pearson (unpublished) and developed first by SLAC field theorists (Drell 
et a1 1977). This method has been tested with the 1D king model in a transverse field 
(Jullien et a1 1978) for which an exact solution exists (Pfeuty 1970). A preliminary 
study of the random Ising model in a transverse field (equation (1)) has been presented 
(Uzelac et a1 1979). In this Letter we only calculated the phase diagram for a 
probability distribution of the Ji, P(Ji)  or of the Ti ,  P ( r , )  constructed from two delta 
functions P(ri) = p S ( r ,  - rl) + (1 -p)S(Ti - r2). We now mainly study the model (1) 
with both random Ti and Ji which satisfy the probability distribution P ( J )  (P(T)) ,  
P ( J )  = N J J N J - ' / J 2  for 0 < J <Jo and P ( J )  = 0 for J > Jo. 

We use a renormalisation block method (Fernandez-Pacheco 1979) preserving 
duality transformations of the model with blocks of n,  = 3 sites. The instability of the 
'pure' fixed point with respect to disorder is studied. A new fixed point is obtained 
which describes the new transition of the random system. This new transition is sharp in 
the sense that the magnetisation goes to zero for well defined values of the parameters 
(T,  randomness) with an exponent p slightly higher than the pure system exponent 
(p  - 0.3 instead of 0.125). We find a rounded peak for the second derivative of the 
ground state energy with respect to r (the logarithmic divergence of the pure system 
disappears). But although some marginalism is present at the new fixed point, the 
essential singularity which is expected in the energy, by analogy with the results of 
McCoy and Wu for the free energy of the 2D classical system, is not recovered. This 
work is divided into five parts. In § 2 we present the renormalisation group method, 
which preserves duality. In § 3 we give the results of this method for the non-random 
case; in D 4 we study the instability of the pure system fixed point with respect to 
disorder and calculate the crossover exponent, in 0 5 we present the renormalisation 
group treatment of the random model: this includes the recursion relations, the fixed 
points and the phase diagram, the critical behaviour and the results for the ground state 
energy and the ground state magnetisation. In 0 6 the results are discussed. 

2. The renormalisation group method preserving duality 

We apply to the Hamiltonian (1) a real-space renormalisation group procedure 
analogous to those already developed to treat uniform spin systems (Drell et a1 1977, 
Jullien et a1 1978) and in particular to treat the uniform Ising model in a transverse field 
in 1D. The method has been modified to preserve the duality properties of ( l ) ,  that is, 
the symmetry between r and J parameters. This modification gives a real improvement 
in the uniform case and becomes particularly useful when applied to the disordered 
case. As previously, we remove such bonds as are necessary to divide the chain into 
independent adjacent blocks of ns  sites. In addition, using the trick of Fernandez- 
Pacheco (1979), we also remove a field on one site of the block in order to have the same 
number of sites and bonds inside the block. Here, for symmetry reasons, we have 
chosen to consider only n,  odd, n ,  = 21 + 1, and to remove the field l?o,j on the central site 
0 of block j .  Then the Hamiltonian for an isolated block j takes the form 
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where 

represen 
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* l  

p = l  
ZT = - C (Jp,jS;+l,js;.j + r p , j s i , j )  (3) 

3 the Hamiltonian for one half of the block. p ,  j deno :s the position of a site 
p ( p  = -1, . . . , 0, . , . + I )  within block j .  (For simplification, we have dropped one of the 
indices for Ji,i+l inside the block, as defined in figure 1 for ns = 5 ( I  = 2).) 

c2,J  C1,J '0.J '1,J '2,J 

- -  r i  d2,Jl J-l,JAJ1,Jj '2J 1 1 r- - 
J L -  - 

-1,J 0,J l , J  ' -1 , J t l  
2,J-I -2, J 2,J -2 ,J t l  

Figure 1. A block of n , = 5  sites, defining the notation adopted in the text for the 
parameters. 

Let us now consider the Hamiltonian %'lo (%'io) obtained from RT (ET) by simply 
replacing Si,, by its upper eigenvalue +1 

1 

p = 2  
= -Jl,jS?,j -ri,jSi.j - (Jp,jS;-i,jS;,j +rp,jS;,j). (4) 

By diagonalising %'lo exactly we can determine its ground state energy E;  and the 
expansion of the ground state wavefunction 

where, using the S" representation, ep = *l represents the possible eigenvalues of S;,j 
and le1, . . . , E L )  a base in the space of dimensionality 2' where acts %'lo. The energy Ef 
and the coordinates A:, ,.,., are functions of the 'right' parameters Jl , j ,  rl,j, . . . , J1,j, rL,p 
By then diagonalising X i o  we find that the energy ET and the coordinates A ~ - l , , , , , e ~ l  of 
its ground state are the same functions of the 'left' parameters J - I , ~ ,  r-l,j, . . . , J-l,j, r+. 
Then it is straightforward to see that the ground state of the whole block is a doublet at 
energy Ej =ET +ET. Two components of the doublet, denoted 

I+>j =I A:, ,..,, , A L ,  ,_.., e - l l ~ - ~ ,  . . . , 6-1, +, c l , .  . . , € 1 )  

and are 

(6) 
I-)j=C A:, ,..., &L,,..., e - J - € - - l ? .  . -€-I, - 9  - € I , .  . 3 - € I ) .  

Thus it is sufficient to diagonalise each half Hamiltonian %lo and Rio to determine 
completely the ground state doublet of the block. 

The approximation of the method consists in retaining only the two lowest states of 
the block (here the doublet (6)) as a new base for the block in order to rewrite the 
original bonds and fields which have been dropped initially. To do so, we define a new 
spin Sj for the block, the eigenstates of Six' being respectively I + ) i  and I-)+ By rewriting 
the term -ro,jSG,j into - r ; S f ' ,  the new field r! is a function of the parameters of the 
block 

r; = r o , j t d J i , j ,  ri,,, - , JL,j, ri,j)ti-(J-i,j, r-i,j, . . , J - I , j ,  r-r,j). (7)  
The function & can be determined through the coordinates 

tr(J1,jj rl,j,. . . , J [ , j ,  ri,j)=x A: ,...., ,..., 
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Also, by rewriting the old spin operator Sz, j  we obtain the spin recursion relation 

Using this recursion relation for the spins at the edges of two adjacent blocks we can 
rewrite the original interblock bond -J~,j,-l,j+lS;iSX-I,j+l which transforms into 
-Ji,j+lS;'S;Ll where the new interaction Ji,j+l is a function of the parameters of the 
block 

J j , j + l  = J I , j ; - f , j + l t J ( J 1 , j ,  rl,j, . - . J l , j ,  rL,j)&(J-l,j+l, r-i,j+i, . 
The function tJ is determined by 

. 9 J - l , j + l ,  r-i,j+i). (11) 

(12) t J ( J l , j ,  r1,j9 a a 9 J f , j ,  r , j) = t t j  = C €[(A:, ,..., 

Thus, after one iteration step, the Hamiltonian takes the same form as (1) (after 
dropping the term E j )  but dealing with blocks and with new parameters Jj,j+l and ri 
given as a function of the old parameters by recursion relations (7) and (11). The term 
Ej is needed to calculate the ground state energy per site. It is also useful to consider the 
averaged operator 

1 +' 
n, p = - ~  

..i" = - c SL, 

which follows the recursion relation 
g? = 5 a?' 

I m 1 9  

where 

(14) 

This operator will be used to calculate the x component of the magnetisation. 
Let us emphasise the duality between the two recursion relations (7) and (11). Our 

procedure is invariant under the transformation which changes bonds into sites ( r - J ) .  
This must be reflected in the form of the expressions (7) and (11); in particular, the 
following identity holds: 

tr(J1, rl, . . . , r l )  = tJ(rf ,  J[, . . . , rl, A). (16) 

These duality properties also appear clearly when comparing the procedure applied 
here to the Ising model in a transverse field with the same procedure applied to the 
dimerised spin-$ X Y  model in 1D (Fields 1979). It has been shown that the dimerised 
X Y  model with alternate constants J2p  and KZpcl is equivalent to two double-spaced 
independent and orthogonal Ising chains in a transverse field, the constants J2p  and 
K2p+l  being replaced by Jp and rp  (Jullien and Fields 1978). Removing alternately sites 
and bonds in the transverse field Ising model corresponds to the alternate removal of 
bonds J and K in the X Y  model. The procedure is then completely symmetric in J and 
K. In the treatment of the dimerised uniform X Y  chain blocks of odd number of sites 
have previously been considered for these symmetry reasons (Fields 1979). 

Let us give a simple example (n ,  = 3) where the recursion relations can be written 
analytically. This example will be used extensively when studying disorder. For n,  = 3, 
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&- and & are functions of rl and J 1  only, and are given by 

Thus the recursion relation for r takes the form (the index j has been dropped) 

ri = ro[rl/(r; +~:j ' /~][r-~/(r?~ + ~ t ,  )'I2] (18) 

and the similar dual expression for J ' .  Also in this case the ground state energy of the 
block takes the form 

E = -(r: + ~ p ) l l ~  - (P1 +JZ, ) * I 2  (1 9) 

and the constant &, (appearing in (14)) 

For larger values of n,, these different expressions can only be obtained by 
numerical computation. 

Before discussing more precisely the treatment of disorder let us present briefly the 
main results of the present method when it is applied to the ordered case where a 
remarkable improvement is obtained as compared with the previous study (Jullien et al 
1978): not only is the critical field ( r / J ) c  = 1 recovered exactly (due to duality) but also 
the critical exponent Y is exactly equal to one, and other exponents are improved. 

3. Results in the ordered case 

In this case, at each step of the renormalisation group procedure the parameters are 
site-independent: Jz,z+l = J, r, = r. Then 5, and & are functions of only the dimension- 
less parameter T / J ,  and the duality imposes & ( r / J )  = &(J/l?). The recursion relations 
reduce to 

and for the dimensionless parameter r / J  

( T I J ) '  = (r/J)(G(J/r)/SJ(r/J)j2. (22) 

We always obtain an unstable fixed point ( r / J ) c  = 1 separating two trivial stable fixed 
points T / J  = 0 and T / J  = +CO. As expected from duality arguments, the exact location 
of the transition (T/Jjc = 1 is recovered exactly. For example, in the simple case n,  = 3 
we have 

J' = J ~ / ( J '  + r'), (23) 

r ' / J i  = ( r / J ) 3 .  (24) 

ri = r3 / (~*  + r2) 
and 

The exponent Y which describes the divergence of the coherence length at the transition 
is obtained by linearising the recursion relation (22) near r / J  = 1. It can be seen from 
formula (24) that for n,  = 3 we recover the exact result v = 1. This result, independent 
of n,, has been verified by numerical computation up to n,  = 17. 
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The 'dynamical' exponent z which gives the dilatation of energy at the transition is 
obtained from the renormalisation of J (or r) for r/J = 1: 

z = --2 In & ( r / J  = l)/ln n,. (25) 

For n, = 3 we find 

z =in 2/ln 3 = 0,6309 . . . . 
Using the equivalence between the Ising model in a transverse field at the transition and 
the uniform XY chain (24) (Jullien and Fields 1978) where the renormalisation group 
procedure can be performed analytically, we are able to derive an analytical formula for 
Z :  

t = ln((n,+ 1)/2)/1n n,. (27) 

This formula will be derived elsewhere (Pfeuty, Jullien and Penson, to be pub- 
lished). 

Expression (27) gives an idea of the very slow convergence of z towards the exact 
value z = 1 when ns+ 00. As generally observed with this kind of method, when they 
tend to their exact value, the exponents converge as l / ln  n,. The plot of z as a function 
of l / ln  n, is given in figure 2. 

, 

3=n, 

0 0 25 0.50 075 

l / i n n S  

Figure 2. The exponents p, z and Y of the ordered system and the crossover exponent 4 
plotted as a function of l / l n  n,  up to ns= 17. 

The x component of the magnetisation can be obtained numerically by integrating 
formula (14) up to the fixed point. We obtain 

The exponent p can be extracted from the nurnerical computation of ((T") near (I ' /J)=. 
The curve giving (U") as a function of r/J is given in figure 5 for n, = 3 (dotted curve). 

The exponent 77 which describes the power law decay of the x-x correlation function 
at the transition in the expression (S;SF+:R) - R-" is obtained from the renormalisation 
of U" at the transition and is given by 

77 = -2 In(&(r/J = l))/ln ns. (29) 
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We have verified, for all n,, the scaling law 2 p  = q v  which reduces here to 2p = q, and 
we have preferred to calculate p directly from 7 (this gives a more precise result). For 
n, = 3 we find 

(30) 

The results for p obtained by numerical computation up to n, = 17 are reported as a 
function of l / ln  n, in figure 2. We observe a good linearity with the exact value p = $ 
obtained for n, + CO. 

We can also calculate the ground state energy per site by cumulating the constant 
E:,") divided by the number of sites at step n : 

1 = v/2 = -ln((l +J2)/3)/ln 3 = 0.1977. . . . 

In the case n,  = 3 this formula gives 

The second derivative of the ground state energy with respect to the transverse field, 
which corresponds to the specific heat in the classical analogue, has been plotted for 
n, = 3 in figure 6 (dotted curve). We observe a much more marked peak than with the 
previous approach (Jullien et a1 1978). The reason is that the cy exponent giving the 
divergence is here found to be positive. From scaling arguments a is given by 
a = 2 - (1 + z)v = 1 - z. Here for ns = 3 we find a = 0-36,  which corresponds to a strong 
singularity. 

The different numerical results in the ordered case are listed in table 1 for n,  = 3, 
n, = 5 and for the upper n,  value for which we have performed numerical computations, 
n,  = 17. 

4. Generalities on disorder and crossover exponent 

At a given step of the iterative process described in the preceding section, the constants 
J,i+l and ri entering the Hamiltonian are supposed to be distributed with some 
probability distribution. As a first approximation we shall assume that all these random 
parameters are distributed independently from one another with probability dis- 
tribution PJ(J) for the Ji,i+l and Pr(r) for the Ti. In principle the renormalised 
probability distributions P>(J ' )  and Pk (r') could be calculated from the renormalisation 
equations (7) and (11). For example, for n s =  3, Pk(l7') is given by 

In fact it is numerically too complicated to follow precisely the entire shape of the 
probability distributions and we must consider some simplifying truncations. We shall 
assume that PJ(J )  (Pr(r)) conserves its reduced shape through the iterative process, and 
we shall assume that this shape depends on only two parameters. These two parameters 
could be the position of the average J and the standard deviation vJ = (7- (J)2)1/2. We 
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Table 1. Location of the transition and exponents v, z and P for the uniform Ising model in a 
transverse field as found with our method for n, = 3 and 5 and for the larger n, value for 
which we have performed numerical computation n, = 17. The results are compared with 
the exact results. The last line gives the crossover exponent, which gives the instability of the 
ordered fixed point (r/.T)= = 1, in the presence of disorder, as defined in the text. The exact 
result 4 = 1 comes from McCoy and Wu (1968). 

n, 

exact 
3 5 17 n,+m 

( r i  4, 1 1 1 1 
V 1 1 1 1 

0.683 0.775 1 Wn,+1)/21 o.631 z =  
In n. 

P = 7112 0.198 0.182 0.161 0.125 
4 0.631 0.727 0.840 1 

then determine implicitly the renormalisation group recursion relations for the two 
parameters by fixing the two first moments of the distribution for J’ and r’. We thus 
obtain the relations 

where the upper bar means a statistical average over the variables. For example 

Before studying a particular example of probability distribution (this will be done in 
the next section) we would like to derive the crossover exponent q5 which gives the 
instability of the ordered unstable fixed point in the presence of disorder. This 
calculation is independent of the shape of the probability distribution. Let us introduce 
small ‘reduced’ standard deviations uJ/ j  and Ur/f around the mean values and I; at 
the unstable ordered fixed point 3 = f (obtained for uJ = c y  = 0), and let us derive the 
renormalisation equations for these quantities. For small standard deviations, we 
obtain from (34) ($)+) 2 +2($ 

where 

A similar equation holds for ur/T. The quantity uiJ can be calculated from (35) and is 
given by 

I 2 2 

U;,=& (“5‘) +U? i (a), 
p = l  aJp 0 p = l  arp 

where the index zero means that the differentiations have been performed around the 
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point J1 = JZ . . . = Ji = rj = r2 = . . . = rl. We then obtain 

where 50 is the common value of tJ and &- for J1 = J2 . . . = JI = I‘l= I‘2 = . . . rr. This 
coupled set of recursion relations has the same corresponding coefficients from duality 
properties; thus, the larger eigenvalue, which gives the renormalisation of (crJ/J)’ + 
(ur/F)’,  is given by 

A = l+$C ((q+(q). 
TO aJ, o ar, o 

We observe that A > 1 ,  thus the ordered fixed point is unstable against disorder. This 
new instability is traduced by an exponent In A/ln ns which can be compared with the 
exponent l / v  giving the instability in r / J .  Their ratio defines the crossover exponents 
#; since here v = 1, we obtain 

# = In A/ln ns. (41) 

This crossover exponent has been numerically computed up to n,  = 17, and the results 
are reported in table 1 and figure 2. We observe a good convergence toward # = 1 for 
n s +  03. The exact result # = 1 is expected from a simple argument (Harris 1974, 
Lubensky 1978). It gives for the random 2D Ising model # = 2 - dv = 0, while for the 
random ‘stripped’ 2D Ising model (Lubensky 1978) # = 2 - (d - 1)v = 1. In the case of 
the quantum equivalent, the random Ising model in a transverse field, one expects also 
# = 1. 

5. Renormalisation group treatment of disorder for n, = 3 

5.1. Probability distribution and RG equations 

We now present an extensive study of the renormalisation treatment of the Hamil- 
tonian (l).by using blocks of three sites (n, = 3) and by choosing the following shape for 
the probability distributions: 

P~(J )  = NJJ~J-~/J?) 

Pj(J)=O for J > Jo. 

for 0 < J < Jo 

An analogous equation is given for r. 
This distribution considers only positive values of the variable. This is justified by 

the fact that, after simple gauge transformations, the original disorder can always be 
reduced to a disorder in the amplitudes of the parameters. On the other hand, taking 
this particular shape will not reduce the generality of the results since we are only 
renormalising the two first moments. As a check, the same calculations have been 
performed with the distribution PJ(J) = [1 / (27~)~”  C,] exp[-ln2(J/Jo)/2 X?] leading to 
the same qualitative results. The distribution (42) was used by McCoy and Wu (1968) in 
their classical 2D model. 
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This shape depends on two parameters Jo  and Nj which are linked with J and uJ 
through the equations 

Notice the relation between the parameter Nj and the reduced standard deviation 
ffJ/.E 

(aj /J)’= l /Nj (Nj+2) .  (44) 
When Nj + CO, aJ/J+ 0, we obtain a peaked distribution at Jo (ordered limit). When 
Nj + 0 the probability distribution becomes peaked near J = 0 but with a large tail 
leading to aj /y+ cy). So, even if the distribution becomes strongly peaked at J = 0 the 
limit NJ + 0 corresponds to strong disorder ( vJ /J -+  CO). 

By using this probability distribution the renormalisation group equation for Jo, To, 
Nj, Nr can be obtained from (34): 

and the dual equation for r. 
example & is given by 

The averaged quantities fJ and are double integrals in the case n,=3. For 

By standard transformations the double integrals can be transformed into simple 
integrals, leading to 

These integrals have been used in the numerical computations. 

5.2. Fixed points and phase diagram 

The parameter space contains the three independent parameters r o / J o ,  Nr and Nj. In 
this space we find a critical surface (ro/J,JC=f(Nr, N j )  which determines the phase 
diagram of the disordered system. This surface has been represented in figure 3 by 
using the set of coordinates r o / J 0 ,  l / N r ,  l / N J .  In the figure the r o / J o  axis which 
corresponds to 1/Nr = 1/Nj  = 0 represents the ordered system and it contains the 
ordered fixed point Ao ( ro /Jo  = 1,1/Nr = O,l /Nj  = 0) .  In the presence of disorder this 
whole axis becomes unstable. By studying numerically the renormalisation group 
recursion relations we find that if we start with r0 /Jo  < ( r0 / Jo ) ,  (and not on the ordered 
axis) we end up with ro/J0+ 0, Nr/Nj  -* 0 ,  while if we start with ro/Jo> (ro/Jo),, we 
end up with ro /Jo-+ cy), Nr/Nj  -+CO. If we start now just on the surface, we follow a 
trajectory entirely contained in the surface which ends up at a new ‘disordered’ fixed 
point AD (To/J0  = 1 ,  Nr = 0 ,  Nj = 0 )  which is thus stable on the surface but unstable 
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Figure 3. The critical surface in the parameter space {To/Jo, 1/N, 1/Nr} obtained with 
blocks of three sites. The sections by the planes 1/N, = 0 and 1/Nr = 0 are represented by 
the bold curves. A. is the ordered fixed point and AD is the disordered fixed point. The 
trivial self-dual trajectory AoAD (contained in the critical surface) is shown. 

elsewhere. The disordered fixed point is self-dual. A trivial self-dual trajectory 
r o / J o  = 1, N r = N j  going from A. to AD is represented in figure 3. 

It is interesting to compare the phase diagram that we have obtained here by 
approximation with the exact condition of Pfeuty (1979) for the annulation of the gap: 

7 T ~ i , i + l  = 7Tri (48) 

which yields 
- -  
In J= In I?. 

For the probability distributions used here this condition can be written as 

T o p o  = exp( -( _f_ - L)) . 
NJ Nr 

(49) 

This ‘exact’ phase diagram has been represented by the dashed curve of figure 4 and 
compared with the sections of our critical surface for constant Nr values Nr = 0.1, 
Nr = 1. The curve Nr = 10 which is almost superposed on the exact curve is not 

0 0 5  10 15  

1 1  - _- 
N j  N r  

Figure 4. Section of the critical surface, for constant Nr values, as a plot of ho/Jo versus 
(l/NJ)- (l/Nr), The exact condition of Pfeuty (1979) is represented by the dashed curve. 
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represented. One can see that the exact phase diagram is well reproduced for large Nr 
and Nj values. Errors become important only when we consider very strong disorder. 

5.3. Linearisation near the new fixed point 

As shown in the preceding paragraph, the transition in ro /J0  for the disordered system 
is governed by the new fixed point AD (To/J0 = 1,  Nj = Nr = 0). One can linearise the 
recursion relations (45) near this fixed point by using the following expansions of the 
integrals (47): 

When adopting the following notations 

N = (Nj + Nr) /2  n = ( N J - N ~ ) / ( N J + N ~ )  ro/J0 = 1 + E  (52) 

the linearised renormalisation equations near n = 0, N = 0, E = 0 are decoupled in the 
first order: 

n ' - 3 n ;  N I - ~ N ;  E' - E .  (53) 
Thus we find that the new fixed point is stable against variations in N, unstable against 
the variations in n and marginal against the variations in To/J0.  The larger eigenvalue 
corresponds to the relevant parameter n which is related to the difference between the 
standard deviations of J and I'; the corresponding exponent vD is equal to 1. The 
instability of n has already been observed in the preceding paragraph, since for 
I'o/Jo < (ro/Jo),, Nr/Nj  + 0 ,  that is n + 1, while for ro /Jo  > (I'o/J&, Nr/Nj  + CO, that is 
n + -1. Further expansion shows that the marginality in E is stable. This does not yield 
an infinite exponent v as found by Mc Coy and Wu (1968) but still E + 0 very very slowly 
near the fixed point (depending on the direction of approach to the fixed point). 

At the new fixed point, one can define a dynamical exponent zD linked with the 
dilatation of f and 7;  since i?' = F/4, P = 7/4 in AD, one obtains Z D  = In 4/ln 3 = 1.26. 

5.4. Magnetisation 

As in the ordered case the magnetisation is calculated by using the averaged operator 
u; = ( l / n s )  X S:p, Only now at each step we take also the average over the disorder, so 
that ux follows the recursion relation 

ux = tmuX' (54) 

t m  = (1 + 2 5 ; ) / n s .  ( 5 5 )  

with, for ns = 3, 

The magnetisation has been plotted in figure 5 as a function of r o / J 0  for different 
values of Nr = NJ. For Nr = NJ the location of the transition (I'o/Jo), = 1 is unchanged 
and always corresponds to vanishing magnetisation. For large values of Nr = Nj the 
curve resembles the ordered one, but for small values of Nr = Nj the magnetisation is 
reduced as would be expected in the presence of disorder. The analysis of the curves 
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0 0 5  1 

'i=/ 7 
Figure 5. Result for the x magnetisation with blocks of three sites as a plot of M = (S") 
versus r /T  for different values of N = N r =  NJ The dashed curve corresponds to the 
ordered limit ( N  + a). 

near ( r o / J o )  = (To/J0),  gives a new exponent p D  = 0.370 different from the ordered one 
( p  = 0.198 for ns = 3). 

At the transition the trajectories flow to the new fixed point N r  = NJ + 0 in which 

dilatation is given by du = -ln(&,)/ln 3 = 0.37. We could define as for ordered systems 
an exponent vu = 2dD = 0.74, but here, in the presence of disorder, there is no reason 
why this exponent should give the power-law decay of the spin correlation function. 

6 -1. - (see equation (51))  so that at the transition the exponent dn giving the spin 

5.5. Energy 

The ground state energy per site is also calculated as in the ordered case, with the 
addition of averaging over disorder at each step. Thus (32)  is replaced by 

where 
be reduced to a simple integral 

is calculated at each step of the iterative process as a double integral which can 

In figure 6 we have plotted the second derivative of -E/N with respect to the 
applied field. This quantity corresponds to the specific heat in the classical analogue. 

We observe that the peak of the specific heat disappears in the presence of disorder 
as already found by McCoy and Wu. A possible explanation of the disappearance of the 
peak could be obtained by estimating the exponent aD from the scaling law a D =  
2 -- vD(l+ zD) = -0.26. a,-, is here negative. 

6 .  Discussion 

The results presented above can be examined as the next step in a study of the 
application of a quantum renormalisation group method to a disordered system that is 
precisely equivalent to the McCoy and Wu model (1968). The problem has already 
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TI 7 

Figure 6. Result for the second derivative of the ground state energy with respect to for 
different values of N = Nr = NJ. The dashed curve corresponds to the ordered limit 
( N + a ) .  

been treated by a non-dual renormalisation group method, where only the transverse 
field was random, distributed through two delta functions, while the Ising interaction 
was kept homogeneous (Uzelac et a1 1979). Such a crude approximation was sufficient 
to give the correct phase diagram, but not the expected critical behaviour. 

The present approximation is still very simple (probability distributions for T and J 
still decorrelated and fixed by only two moments) in order to allow, as far as possible, an 
analytical study. However we observe now a real improvement compared with the 
previous study: we obtain the right crossover exponent and some other new results 
which agree with expectations or exact results of McCoy and Wu (1968). In particular 
the second derivative of the ground state energy with respect to the transverse field is 
rounded at the transition as was found for the specific heat in the classical equivalent. 
The magnetisation, which is here calculated in the whole low-r phase, is reduced in the 
presence of disorder and the corresponding pD exponent is found to be larger (by a 
factor of almost two) than in the ordered case. For the Mc Coy and Wu model, only an 
upper limit of pD (corresponding to the 'edge' magnetisation) was found which was 
twice as large as the corresponding ordered exponent. However, an important dis- 
crepancy remains concerning the exponent vD and the new fixed point. Our simple 
approximation is no longer justified in the limit of very large standard deviations. Thus, 
instead of marginality, we obtain a set of decoupled (in the leading order) equations, 
where quantity relative to disorder is strongly relevant while r / J  shows a stable 
marginality. Further improvements which should be carried out in the future are the 
introduction of correlations between r and J parameters, by taking into account a 
larger number of levels. This constitutes another kind of investigation which implies 
much more complex numerical computations. 
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